Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All HCQ studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic

Brufsky, A., J. Medical Virology, doi:10.1002/jmv.25887
Apr 2020  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
 
*, now known with p < 0.00000000001 from 422 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
3,900+ studies for 60+ treatments. c19hcq.org
Theory on the effectiveness of HCQ. HCQ has been shown to block the polarization of macrophages to an M1 inflammatory subtype and is predicted to interfere with glycosylation of a number of proteins involved in the humoral immune response, possibly including the macrophage FcR gamma IgG receptor and other immunomodulatory proteins, potentially through inhibition of UDP-N-acetylglucosamine 2-epimerase. In combination with potential other immunomodulatory effects, this could possibly blunt the progression of COVID-19 pneumonia all to way up to ARDS.
Brufsky et al., 15 Apr 2020, peer-reviewed, 1 author.
This PaperHCQAll
Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic
MD Adam Brufsky
Journal of Medical Virology, doi:10.1002/jmv.25887
Coronavirus disease-2019 (COVID-19) infection and its severity can be explained by the concentration of glycosylated severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral particles in the lung epithelium, the concentration of glycosylated angiotensin-converting enzyme receptor 2 (ACE2) in the lung epithelium, and the degree and control of the pulmonary immune response to the SARS-CoV-2 spike protein at approximately day 8 to 10 after symptom onset, which may be related to both. Binding of ACE2 by SARS-CoV-2 in COVID-19 also suggests that prolonged uncontrolled hyperglycemia, and not just a history of diabetes mellitus, may be important in the pathogenesis of the disease. It is tempting to consider that the same mechanism acts in COVID-19 as in SARS, where an overactive macrophage M1 inflammatory response, as neutralizing antibodies to the SARS-CoV-2 spike protein form at day 7 to 10, results in acute respiratory distress syndrome (ARDS) in susceptible patients. It also allows consideration of agents, such as hydroxychloroquine, which may interfere with this overly brisk macrophage inflammatory response and perhaps influence the course of the disease, in particular, those that blunt but do not completely abrogate the M1 to M2 balance in macrophage polarization, as well as viral load, which in SARS appears to be temporally related to the onset of ARDS. antibody-mediated cell-mediated cytotoxicity, antiviral agents, SARS coronavirus | ROLE OF THE ACE2 RECEPTOR IN COVID-19 INFECTION We are all struggling to understand the human catastrophe of the coronavirus disease-2019 (COVID-19) epidemic. As of April 12, 2020, there were 557043 cases of documented COVID-19 infection in the United States, and 21952 deaths. 1 Our economy except for limited sectors has come to a complete halt as we practice physical distancing to try to mitigate the effects of the pandemic. In the 10 weeks since COVID-19 began to accelerate, there has been a flurry of information from corners expected and unexpected to help us with this understanding. Rapid publication of peerreviewed data has defined the possible risk factors for COVID-19, its clinical course, and its possible epidemiology. In this unusual time of a public health emergency, numerous non-peer-reviewed manuscripts have been uploaded to preprint servers, and their unreviewed data and conclusions must be evaluated in this spirit. Nevertheless, data both published and in preprint form point to a tantalizing hypothesis: that COVID-19 infection and its severity can be explained by the concentration of glycosylated severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral particles in the lung epithelium, the concentration of glycosylated angiotensin-converting enzyme
CONFLICT OF INTERESTS The authors declare that there are no conflict of interests. ORCID Adam Brufsky http://orcid.org/0000-0001-8080-7960
References
Aao-Hns, Anosmia, hyposmia, and dysgeusia symptoms of coronavirus disease
Andreani, Bideau, Duflot, In vitro testing of hydroxychloroquine and azithromycin on SARS-CoV-2 shows 1 synergistic effect 2
Bass, Wilkinson, Rankin, An overview of technical considerations for Western blotting applications to physiological research, Scand J Med Sci Sports, doi:10.1111/sms.12702
Bhatraju, Ghassemieh, Nichols, Covid-19 incritically ill patients in the seattle region-case series, N Engl J Med, doi:10.1056/NEJMoa2004500
Bornstein, Dalan, Hopkins, Mingrone, Boehm, Endocrine and metabolic link to coronavirus infection, Nat Rev Endocrinol, doi:10.1038/s41574-020-0353-9
Brosnihan, Hodgin, Smithies, Maeda, Gallagher, Tissuespecific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice, Exp Physiol, doi:10.1113/expphysiol.2007.041806
Chen, Hu, Zhang, Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial, medRxiv, doi:10.1101/2020.03.22.20040758
Chen, Jiang, Xia, Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation
Cheng, Wang, Wang, Organ-protective effect of angiotensinconverting enzyme 2 and its effect on the prognosis of COVID-19, J Med Virol, doi:10.1002/jmv.25785
Gautret, Lagier, Parola, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents, doi:10.1016/j.ijantimicag.2020.105949
Guan, Ni, Hu, Clinical characteristics of coronavirus disease 2019 in China, N Engl J Med, doi:10.1056/NEJMoa2002032
Hhs, Government gain-of-function deliberative process and research funding pause on selected gain-of-function research involving influenza, MERS, and SARS viruses
Keselman, Fang, White, Heller, Estrogen signaling contributes to sex differences in macrophage polarization during asthma, J Immunol, doi:10.4049/jimmunol.1601975
Lee, Hui, Wu, A major outbreak of severe acute respiratory syndrome in Hong Kong, N Engl J Med, doi:10.1056/NEJMoa030685
Letko, Marzi, Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat Microbiol, doi:10.1038/s41564-020-0688-y
Li, Moore, Vasilieva, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, doi:10.1038/nature02145
Li, Receptor recognition mechanisms of coronaviruses: a decade of structural studies, J Virol, doi:10.1128/JVI.02615-14
Li, Structure, function, and evolution of coronavirus spike proteins, Annu Rev Virol, doi:10.1146/annurev-virology-110615-042301
Liu, Wei, Lin, Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection, JCI Insight, doi:10.1172/jci.insight.123158
Liu, Yan, Wan, Viral dynamics in mild and severe cases of COVID-19, Lancet Infect Dis, doi:10.1016/S1473-3099(20)30232-2
Peiris, Chu, Cheng, Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study, Lancet, doi:10.1016/S0140-6736(03)13412-5
Rekedal, Massarotti, Garg, Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases, Arthritis Rheum, doi:10.1002/art.27703
Roca-Ho, Riera, Palau, Pascual, Soler, Characterization of ACE and ACE2 expression within different organs of the NOD mouse, Int J Mol Sci, doi:10.3390/ijms18030563
Russell, Millar, Baillie, Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury, Lancet, doi:10.1016/S0140-6736(20)30317-2
Savarino, Trani, Donatelli, Cauda, Cassone, New insights into the antiviral effects of chloroquine, Lancet Infect Dis, doi:10.1016/S1473-3099(06)70361-9
Selvin, Zhu, Brancati, Elevated A1C in adults without a history of diabetes in the U, S. Diabetes Care, doi:10.2337/dc08-1699
Shiratori, Feinweber, Luckhardt, An in vitro test system for compounds that modulate human inflammatory macrophage polarization, Eur J Pharmacol, doi:10.1016/j.ejphar.2018.06.017
Villa, Rizzi, Vegeto, Ciana, Estrogen accelerates the resolution of inflammation in macrophagic cells, Sci Rep, doi:10.1038/srep15224
Vincent, Bergeron, Benjannet, Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J, doi:10.1186/1743-422X-2-69
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, doi:10.1016/j.cell.2020.02.058
Wan, Shang, Graham, Baric, Li, Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Gallagher T, J Virol, doi:10.1128/JVI.00127-20
Wang, Hu, Hu, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA, doi:10.1001/jama.2020.1585
Ware, Matthay, The acute respiratory distress syndrome, N Engl J Med, doi:10.1056/NEJM200005043421806
Wrapp, Wang, Corbett, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, doi:10.1126/science.abb2507
Xu, Zhong, Deng, High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, Int J Oral Sci, doi:10.1038/s41368-020-0074-x
Yang, Feng, Yuan, Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS, Diabet Med, doi:10.1111/j.1464-5491.2006.01861.x
Yang, Lin, Ji, Guo, Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes, Acta Diabetol, doi:10.1007/s00592-009-0109-4
Zhang, Zhang, Yu, Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals, J Med Virol, doi:10.1002/jmv.20499
Zhou, Yu, Du, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet, doi:10.1016/S0140-6736(20)30566-3
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit