Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All HCQ studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin

Derendorf, H., Int. J. Antimicrobial Agents, 7 May 2020, doi:10.1016/j.ijantimicag.2020.106007
May 2020  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
 
*, now known with p < 0.00000000001 from 422 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
4,000+ studies for 60+ treatments. c19hcq.org
Discusses pharmacokinetic properties of HCQ+AZ as a potential underlying mechanism of the observed antiviral effects.
Derendorf et al., 7 May 2020, peer-reviewed, 1 author.
This PaperHCQAll
Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin
Hartmut Derendorf, Jean-Marc Rolain
International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.106007
A recent report identified significant reductions or disappearance of viral load in COVID-19 patients given a combination of hydroxychloroquine and azithromycin. The present communication discusses some common pharmacokinetic properties of these two drugs that may be linked to a potential underlying mechanism of action for these antiviral effects. The physicochemical properties of both hydroxychloroquine and azithromycin are consistent with particularly high affinity for the intracellular lysosomal space, which has been implicated as a target site for antiviral activity. The properties of both drugs predict dramatic accumulation in lysosomes, with calculated lysosomal drug concentrations that exceed cytosolic and extracellular concentrations by more than 50 0 0 0-fold. These predictions are consistent with previously reported experimentally measured cellular and extracellular concentrations of azithromycin. This is also reflected in the very large volumes of distribution of these drugs, which are among the highest of all drugs currently in use. The combination of hydroxychloroquine and azithromycin produces very high local concentrations in lysosomes. The clinical significance of this observation is unclear; however, the magnitude of this mechanism of drug accumulation via ion-trapping in lysosomes could be an important factor for the pharmacodynamic effects of this drug combination.
Declarations
References
Barbour, Scaglione, Derendorf, Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices, Int J Antimicrob Agents
Carlier, Garcia-Luque, Montenez, Tulkens, Piret, Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture, Int J Tissue React
Colson, Rolain, Lagier, Brouqui, Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int J Antimicrob Agents
Colson, Rolain, Raoult, Chloroquine for the 2019 novel coronavirus SARS-CoV-2, Int J Antimicrob Agents
Cook, Randinitis, Bramson, Wesche, Lack of a pharmacokinetic interaction between azithromycin and chloroquine, Am J Trop Med Hyg
Cutler, Introduction: lysosome-related organelles, Semin Cell Dev Biol
Devaux, Rolain, Colson, Raoult, New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?, Int J Antimicrob Agents
Fossa, Wisialowski, Duncan, Deng, Dunne, Azithromycin/ chloroquine combination does not increase cardiac instability despite an increase in monophasic action potential duration in the anesthetized guinea pig, Am J Trop Med Hyg
Gautret, Lagier, Parola, Hoang, Meddeb et al., Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study, Travel Med Infect Dis, doi:10.1016/j.tmaid.2020.101663
Gautret, Lagier, Parola, Hoang, Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents, doi:10.1016/j.ijantimicag.2020.105949
Hoof, Tulkens, Gentamicin-induced lysosomal phospholipidosis in cultured rat fibroblasts. Quantitative ultrastructural and biochemical study, Lab Invest
Juurlink, Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection, CMAJ, doi:10.1503/cmaj.200528
Kakeya, Seki, Izumikawa, Kosai, Morinaga et al., Efficacy of combination therapy with oseltamivir phosphate and azithromycin for influenza: a multicenter, open-label, randomized study, PLoS One
Kazmi, Hensley, Pope, Funk, Loewen et al., Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells), Drug Metab Dispos
Lemaire, Tulkens, Van Bambeke, Cellular pharmacokinetics of the novel biaryloxazolidinone radezolid in phagocytic cells: studies with macrophages and polymorphonuclear neutrophils, Antimicrob Agents Chemother
Macintyre, Cutler, The potential role of lysosomes in tissue distribution of weak bases, Biopharm Drug Dispos
Macintyre, Cutler, role of lysosomes in hepatic accumulation of chloroquine, J Pharm Sci
Min, Jang, Macrolide therapy in respiratory viral infections, Mediators Inflamm
Molina, Delaugerre, Goff, Lima, Ponscarme et al., No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection, Med Mal Infect, doi:10.1016/j.medmal.2020.03.006
Ohrt, Willingmyre, Lee, Knirsch, Mihous, Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro, Antimicrob Agents Chemother
Pfizer, Zithromax product information
Poole, Ohkuma, Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages, J Cell Biol
Rolain, Colson, Raoult, Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century, Int J Antimicrob Agents
Schroeder, Gerber, Chloroquine and hydroxychloroquine binding to melanin: Some possible consequences for pathologies, Toxicol Rep
Simmons, Bertram, Glowacka, Steffen, Chaipan et al., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion, Virology
Steinman, Brodie, Cohn, Membrane flow during pinocytosis. A stereologic analysis, J Cell Biol
Tett, Cutler, Day, Brown, A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers, Br J Clin Pharmacol
Thummel, Shen, Isoherranen, Smith, Design and optimization of dosage regimens: pharmacokinetic data. Goodman & Gilman's The Pharmacological Basis of Therapeutics
Tyteca, Van Der Smissen, Mettlen, Van Bambeke, Tulkens et al., Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages, Exp Cell Res
Tyteca, Van Der Smissen, Van Bambeke, Leys, Tulkens et al., Azithromycin, a lysosomotropic antibiotic, impairs fluid-phase pinocytosis in cultured fibroblasts, Eur J Cell Biol
Van Bambeke, Montenez, Piret, Tulkens, Courtoy et al., Interaction of the macrolide azithromycin with phospholipids. I. Inhibition of lysosomal phospholipase A1 activity, Eur J Pharmacol
Wibo, Poole, Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1, J Cell Biol
Yang, Huang, Ganesh, Leung, Kong et al., pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J Virol
Yao, Ye, Zhang, Cui, Huang et al., In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin Infect Dis, doi:10.1093/cid/ciaa237
Zheng, Matzneller, Zeitlinger, Schmidt, Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects, Antimicrob Agents Chemother
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit